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MAXIMUM LIKELIHOOD ESTIMATION OF THE SURVIVAL FUNCTIONS
OF STOCHASTICALLY ORDERED RANDOM VARIABLES

Richard L. Dykstra

ABSTRACT

Many times populations exist which logically must

satisfy a stochastic ordering requirement. Nevertheless,

estimates of these populations may not bear out this

stochastic ordering because of the inherent variability of

the observations. This paper will consider the problem

of finding maximum likelihood estimates of stochastically

ordered survival functions for the cases a) one survival

function being fixed in advance and b) estimating both

survival functions when the data includes censored

observations.

A numerical example is handled in detail to illustrate

the solution to this problem.
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I. INTRODUCTION

Many times a new population is created which can

logically be only stochastically greater (or less) than

the old population. Nevertheless, estimates of these

populations may not bear out this stochastic ordering

because of the inherent variability of the observations.

Brunk, et. al.(1966) have given Maximum Likelihood

Estimates (M.L.E.'s) of the C.D.F.'s of two stochastically

ordered distributions when all observations are complete

and the estimated distributions arerequired to be of the

discrete type. This paper will consider the similar

problem of finding M.L.E.'s of stochastically ordered

survival functions for the cases a) one survival function

being fixed in advance and b) estimating both survival

functions when the data includes censored observations.

The unrestricted (except for the requirement of

being a discrete distribution) M.L.E. of the survival

function when censored data is involved has been developed

by Kaplan and Meier (1958). Since the results of Kaplan

and Meier are so well-known and widely used, this paper

will largely conform to the notation developed there.



II. NOTATION, THE PROBLEM, AND THE SOLUTION

Initially, we consider the following problem. Inde-

pendent observations are taken from a discrete distribu-

tion on the positive part of the real line with survival

function P(t). We wish to find the M.L.E. of P(t) subject

to P(t) > Q(t) for all t where Q denotes the survival

function of a fixed discrete distribution with only a

finite set of points possessing positive probability.

Complete observations (which we will call deaths)occur on a

subset of the times S < S < ... < S S = 0 and S .1 = for

convenience). The number of deaths at S. is 6j. We let

A denote the number of censored observations (losses)

in [S i t S +l), assumed to occur at Li i = 1..,

In Section I1, we will prove that t(t) may be expressed

in the following manner. Let S1 < S2 ... < Sm

denote the ordered values of the times of death combined

with the points of positive probability under Q, and let
m

nl. ji j denote the number of items surviving just

prior to Si . Our p. and qj are related to P(.) and Q(.)

respectively by

Pj= n [P(S.)/P(S- )], and

qj= n [Q(Sj)/Q(SjI ) ].

Then the restricted M.L.E. for t < S is given by
A m

P(t) - exp[ E Ai]

i;S !5t

where A is given in the following theorem.

(Throughout the paper we shall treat and as real

numbers greater than and less than all other real numbers

respectively. We shall also adopt the conventions that
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In(O) = -® , +./+_ = +1 , 0(+_) = 0 , 0/0 1 , and 00 1 .)

Theorem 2.1. Let k + denote the constant k such that
a ,b

b n. - 6  k b
(2.1) E en(- J  -.. ) = E qj.

a a

if k > 0 and exists anl 0 otherwise. Then if

A min max +
(2.2) k. = a!i i_<b ka,b

AA
Piis expressable as A

n 6. + k.
A= n (- -,r )

n. + .
I I

Of course if the last observation at say t* corres-
A

ponds to a loss, the P(t) may be defined arbitrarily for
A A

t > t* providing P(t) z Q(t) and P(t) is a survival function.

(Note that if Q(S1 ) = Q(S2 ) = -.. Q(S i ) = 1, then

i n. - S. + k i
E Z n. +------) I Kq. = 0

has the solution k =. This leads to the intuitively reason-
A A•••

able solution p1 = P2  = pi = 0, even though the likeli-

hood is identically zero in this case.)

Alternatively, the Aj's can be found more easily by the

following algorithm:

1. Find the largest k1 > 0 such that

i n . 6. + k If
£ tn ( ' ) E qj for 0 < i _ m

If more than one i1 works, choose largest.

A n _ a + k1
2. Let P.1 tn ( nj + k for 1 5 j i

J + 1
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3. Find the largest k2 > 0 such that

i2 i ( 1 2

i E +1 + n = E qj for i I < i2  M.

If more than one i2 works, choose largest.

An. -6. + k2 <
4. Let p 3 en ( n  i < j 2"

5. Etc. If at some point, no such positive k

exists, then

n. 6.
pj = n(, j m.

n..

If the last observation at say t* is a loss, then P(t) may be

may be defined arbitrarily beyond t* as long as 1t)

and P(t) is a surivial function.

The order constraints P(t) s Q(t) can be handled similarly

with the modifications given below.

if = 6 =''=6 = 0 and 6. > 0, set P 4
1 0 o~

for j = 1,2,*,io .For j >i , 'heorem 2.1 will still

work by

i) restricting a to be greater than i0

ii) defining kab to be the value k in (2.1) if k 0

and exists, and 0 otherwise, and

iii) interchanging the words min and max in (2.2).

The algorithm is modified to handle P(t) s Q(t) by

i) setting j = qj for j = 1, 2, , io

ii) beginning the sum in step 1 at i0 +l rather than 1,

iii) replacing k . 0 by k. < 0 , and

1 1



iv) replacing "largest k. > 0" by "smallest k. 0" in

steps 1 and 3 and replacing "positive" by "ncgative"

in step 5.

The two-sample problem where a second set of independent

observations are taken from a distribution with survival func-

tion Q(t) can be handled by essentially the same methods already

given. In this case, let SI< < Sm denote the ordered times

of death of the combined samples. We let m, denote the

number of items in the second sample surviving just prior

to S., and d. the number of deaths at S. in the second .<ample.

Then Theorem 2.1 will still apply if (2.1) is replaced by

b n. -6 + k b m. -kd -k
(2.1") n J

a n + a M.

subject to a special case.

As is to be expected, when Theorem 2.1 applies
A

m. -d. - k.
q n(1)

1

If d I =d 2  .=dio 0, di +1 > 0, then we must

set pj= q4j j . io, in our likelihood function. It is straight-

forwa rd to show that.

m. + n. - .
(2.3) - - -

m]• + n. , 1

are the solutions for pj and qj in our equations. The earlier

scheme then works if we require a to exceed iO .

The algorithm will still work if we

i) define j and j as in (2.3) if j < i

ii) replace

E q bmy - d. - k fE q. by r. LnJ ]- .- £A or all t

_____........... .........
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iii) and define

,, m. - d. - k )

qj = tn( M dk for i. 1 < j < it.

III. DERIVATION FOR THE ONE SAMPLE PROBLEM

Clearly, the likelihood function of the observations

is expressible as

0 (0) m 6j
(3.1) L(P(t)) = II P(L. ) ii ([P(S. 0)-P(Sj 3 H P(1 )

i=l 1 j=l i=l

where S1 < S2  ... < Sm are defined as in Section II. We wish

to maximize this expression subject to the condition that

P(t) Q(t) for all t. Clearly to do this, the P(Li() and

P(S. - 0) should be as large as possible and the P(S.) as small

as possible. Decreasing the P(S.) too much, however, may cause

the order constraints to be violated. However, since we are

dealing with discrete distribution, clearly it will suffice to

maximize

I1P(Sj 1 ) - P(S.)] j P(Sj) .

subject to P(S.) > Q(S.), j = 0, ... , m, since we can

take P(..) to be constant on the intervals [Sj., S +l) .

Equivalently, we wish to maximize
m P(S.) 6. P(S._I) 6j P(S-)
IT [I1 - PTSj_ ] 3 [I-(S1j - 12 )  ...P(S I [PTs'j ) ...P(S ) ]I 3

P(S1 ) Q(S)

or, letting p' = (SjI) and q' = Q S )

3 -Sj-1) j j-l)

to maximize
M X .+6.j--

n' 1(1 -pj)~pI p- 3
j=l - i 1

subject to

i i

II p' - 1 q' for i = 1,2, ... , m and 1 k pj 0 for all i.

j=l " j=l --
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m
If we let ni  E i 6. + A. denote the number of items

1 iJ =

surviving just prior to Si, our expression becomes

m 6. n.-6.
1 (I -p ) p J

Finally, making the change of variables,

P = Zn p: and qi = Zn q'

and considering the natural log of the likelihood, our

problem is to maximize

m(3.2) f(pl "'Pm) i . n(l - epi) +(n. - ) p

subject to the constraints

i i
Sp. I ' q j  and 0 e P. >

- " for i 1, 2, ... , m.

Suppose the constraint

Z p. = E qj = c (0 > c > c)1~ 1

is imposed when maximizing f(Pl, ... , pm ) . Then by

i-I
writing pi = c - E and setting the partial derivatives

IPi
equal to zero, we obtain the system of equations

(3.2)- 6j e /(l - e p j  + n - 6 j = 0, j > i and

(3.3)- 6. ePJ/(-ePJ)+n. - 6. -6 ei/(1 - e p ) + n i - 6. = -k, j < iiJ J i 1 1
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Solving these equations gives the values

pj n( n ), j > i, and

n.-6.+k
pj n n .  )' kj <  i.

(Strictly speaking,equations (3.2) and (3.3) arc not valid if

6. = 0. However, our solutions are still correct

according to our previous conventions.) Moreover, noting

that

n. + k
A 1
Pi - Zn( n. + k

by adding the first i equations it easily follows that k

must be a real solution of the equation

i n. - 6.+k i
Z tn( I . +Jk ) + I qj = c.1 j

In most situations, k will not have a closed form

expression.

If m* constraints are imposed in obtaining the M.L.E.,

say

i I  i imi,
1 1*M

Z pj = q , ... , p= qj cm,
1 1 1 3 1

then this is equivalent to the constraints

iI1 i 2  i m*
Z pj = el, E pj C c2 el' .... E Pj -M CM -Jil+l Pimc- 1,. , .1  = cm* -cm*li

1 1+1 M+
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Each part of f(') may then be maximized separately

to obtain a solution of the form

A- • + kt

(34)n ) if i_ < j < it' t = I m* 1

where k is the unique real solution of the equation

(3 5) t . , = 1 ... , m*=

t1 - I .c

(We take i0 , Co, and km*+l to all be zero.)

The problem of finding the stochastically ordered

.1.L.E. of the survival function is thus that of determin-

ing which constraints should be imposed.

To answer that question, the following lemmas are

important.

Lemma 3.1. The function

m

f(Pl P2' .. . = 6 Zn(l - ep i) + (n. - 6 ) pi

is concave for 0 4 P -

Proof. This easily follows since

a2 f ieP'( i )2 0

Pi

Since f(pl, ...,pm) is concave, and the constraints

on the pi's are linear, the following lemma follows by

arguments similar to those used in Theorem 1 of Dykstra and

Madsen (1974).
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Lemma 3.2. Assume that A and A denote column vectors,

f(.) is a concave real valued function defined on an

appropriate subset of Rn , and that Ak maximizes f(A)

subject to the constraints A' A 5 bi, i f 1,2, ...,k.

Then if the additional constraint A' A bk+ is

imposed, we may assume that

a. if A' A A
k+l Ak bk+l, Ak+l = Ak;

b. if A Ak > b A'+b A b

The key in determining which constraints need by

imposed in maximizing (3.2) is given in the following theorem.

Theorem 3.1. If the actual restricted M.L.E.'s are

expressed in the form of (3.4)

then k k km* a 0.

Proof. Without loss of generality, assume k1 < k2 . Then

if the maximum is found with the m* - 1 imposed constraints

i2  im,

j p = c2, ..., pj Cm,
1 ]

the value of kI which corresponds to the first constraint

is such that k < kI < k2 . This easily follows since the

A
p are nondecreasing functions of the k . Since

i2 n. - 6. + k * 2 n. -. + k2)

Zn( 3 n.i E n . k
jai nj+k*j-i n+k 2
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for all iI  i 5 i 2, it follows that

i i
Z pj 2 Z qj  for i , ... ,

1 1

where the pj denotes the values which maximize f(.)

imposing only the m* 1 constraints. By Lemma 3.2,

this implies that pj* = Aj which is an obvious

contradiction.

Theorem 3.2. The algorithm given in Section II obtains
APj"-

Proof. Straightforward from previous considerations.

The closed form expression for a particular pi

given in Section II can also be obtained.

Proof (of Theorem 2.1). Clearly the expression is \alid

for l by Theorem 3.2. Thus, using the notation of the

algorithm given in SectionII, it easily follows that
A

k 1 2- k m

A
Let i denote the first integer - i1 such that k k. Then

i1 i1 n j k1 i-I n.6. +k 1
i ~ q. = l n(_______k )3r n 1j+k

^F

in n6 + j +l L ki .n +k E tn( n k

A

i n + kiJ 1i-I

z q .+ I qJ

which is a contradiction. Thus no such i exists and
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A

k ki for i = 1,2, ... , iI. Essentially the same

arguments handle subsequent intervals.

We should note that whenever 6- = 0, (no deaths

are observed in the interval [Sj, Sj , 0. O, and the survival

function P(t) places zero probability over this intervail.

H4euristicalty, the stochasticall.\ ordered b~.E

acts like it has k. additional items on test at the time

JJSj. Over the interval [Si so Sj+I)', kj - kj~l of these itelas

are lost, etc. Note, however, that the k. need not be

integers.

IV. THE STOCHASTICALLY ORDERED TWO SAMPLE PROBLEM

Let us now consider the case where our observations,

perhaps censored, come independently from two different

discrete populations. As in Section III, we denote the

true survival functions and the imposed ordering by

P(t) z Q(t) for all t.

As before, we assume that P(0) = Q(O) = 1 WLOG.

In a manner similar to that used in Section 11,

the function to be maximized may be expressed as
m

f(p, q) = - [6. in(l - ep i) + (n. - 6.) p.] +

[d. tn(l - e q j) + (m. - d.) qj]

where 0 < S1 < ... < S denotes the ordered times of

death of the combined sample, 6. (d.) denotes the number

of deaths at S. in the first (second) sample, n. (M)

denotes the number of items surviving just prior to S.
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in the first (second) sample, and p. (q.) represents en[P(S /P (Si J0

(tn[Q(S)/Q(Sj_l)). The order constraints are still of

the form

i .1
Zp. q. foril, ... , i.1 J  1 J

If we wish to maximize f subject to the one

constraint

i i
: pj :q
1~ i

i i-1

then we may let qi E pj - E qj, and set the partial
1 1

derivatives equal to zero. This results in the set of

equations

- 6. e /( - ep) + n - 6 0

j
- d. eqJ/(1. - eqJ) + m. - d0..1

J + m

d 6 ej.eq q_ e d d 0

6 e (1 - e ) + n. - 6. = d. e / (1 - e 1)- m. + d. k j i

- d. e'i (I - e q i ) +m - d =-d i e qi/(-e )q i +m -+ d = j < i.

J 1 J
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Solving these equations results in the solutions

n. - 6.

A

pj = Zn( n. ),j > i
J

A m - d k
q = tn(. )' j i

n. - d. k

E^n J n. + I k in( I
A

qc = i( sm. of th j < q
JJ

where k is a real solution to the equation

i n. - . +k i m. -d.- k

sp tncas- JT ) = 1 o -h e i )

problem • whc wil woki h ape.d o nld n

If more constraints are imposed, similar solutions
can be obtained for disjoint strings of the . and j.

Once again the key question is which constraints

need be imposed in finding the true restricted M.L.E.'s.

' However, the same methods and lemmas used in proving

Theorems 2.1, 3.1 and 3.2 will also suffice in the two-

sample case and lead to the expressions given in Section IT.

Another appealing method of handling the two-sample

;. problem which will work if the samples do not include any

censored data is to convert it to a one-sample problem as

considered in Section 3 by making the observation that
A1. there must exist a survival function, say R(t), depending

€ on the data such that

P) a R(t) a Q(t) for all t.

Ii
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Intuitively, the more equality constraints imposed
A A A

between P(t) and Q(t), the more P(t) will be pulled down
A A A

and Q(t) forced up (assuming the constraints P(t) - Q(t)

are already imposed). The limiting case of this occurs

if all equality constraints are imposed in which case
A A A
P(t) = R(t) = Q(t)

A
where R(t) denotes the Kaplan-Meier (1958) product limit

estimater obtained from the pooled data. Thus if we
A A

construct R(t), treat it as fixed, and compute P(t) as in
A ASection III,P(t) will be our restricted M.L.E. for P(t).

A
With obvious changes, Q(t) can be obtained similarly.

Unfortunately, this method does not work when the samples

include censored data although the end results are very

close to the actual M.L.E.'s.

In the special case of no censored data explicit

expressions for the ka,b are given by

b b
ka,b = (E 6i) ma (a di) na

a a

b
.(d i  + 6 )

a

This is of course a weighted average of' ii d and --1

with weight proportional to the number of deaths in the

two populations for the appropriate interval. In this

case the expressions in Section 2 are equivalcnt to those

in Bi-unk, et al (1966).



,C 16

V. AN EXAMPLE

To illustrate the method, we apply it to some

data gathered by Dr. Martin Alpert, Department of

Cardiology of the University of Missouri Medical

Center. Dr. Alpert's data consists of survival times

for people who have had heart pacemakers implanted.

We wish to estimate the survival functions separately

for males and females, and will impose the constraint

that the survival function for females never drops

below that of males since it is well documented that

females are longer lived. The data includes many

censored observations of people who were lost to the

study. The data on pages 18 and 19 has been coded to

conform to the notation used in the paper.

The M.L.E.'s of ordered survival functions for

males and females is shown on page 20. KM-P(T) and

KM-Q(T) denote the unrestricted Kaplan-Meier estimates

for the females and males respectively, while P(T) and

Q(T) indicate the M.L.E.'s obtained using our algorithm.

We note that P(T) has been forced up from KM-P(T) while

Q(T) has been forced down from KM-Q(T).

To try and get an idea of the overall effect of

our order restrictions, we computed the expected values

corresponding to our various survival functions when
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they were all truncated at 97 months. These expectations

were

_P(T) Q (T) KM-P(T) KM-Q(T)
72.737 68.609 69.842 70.837.

Thus we see that our order restrictions increased the

estimate of expected life (if truncated at 97 months) by

nearly 3 months for females while decreasing it by approxi-

mately 2 months for males

A computer routine (in Fortran) for implementing

this procedure is available upon request.
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